1. Define the group Inn(G) of inner automorphisms of a group G. Show that $Inn(G) \cong G/Z(G)$, where Z(G) is the center of G.

Solution: See Theorem 9.4 from the book "Contemporary Abstract algebra" by Joseph A. Gallian.

- 2. Describe the automorphism group of a cycle group of order n. Solution: See theorem 6.5 from the book "Contemporary Abstract algebra" by Joseph A. Gallian.
- 3. Let G has even order 2n. Suppose that exactly half of the elements of G have order 2 and the rest form a subgroup H of order n. Prove that o(H) is odd and that H is abelian. Solution: The order of H must be odd otherwise H contains an element of order 2 using Cauchy's theorem.

The index of the subgroup H in G is 2, hence H is a normal subgroup.

So it remains to prove that H is abelian.

Let $a \in G \setminus H$ be an element of order 2. As $a \notin H$, the left coset aH is different from H. Since the index of H is 2, we have $aH = G \setminus H$. So for any $h \in H$, the order of ah is 2.

It follows that we have for any $h \in H$,

$$e = (ah)^2 = ahah,$$

where e is the identity element in G.

Equivalently, we have

$$aha^{-1} = h^{-1}$$

for any $h \in H$. (Remark that $a = a^{-1}$ as the order of a is 2.)

Using this relation, for any $h, k \in H$, we have $(hk)^{-1} = a(hk)a^{-1} = (aha^{-1})(aka^{-1}) = h^{-1}k^{-1} = (kh)^{-1}$. As a result, we obtain hk = kh for any $h, k \in H$. Hence the subgroup H is abelian.

- 4. Let G be a group and let H be a subgroup of G. Let G acts by left multiplication on the set G/H of all left cosets of H in G. Let ψ_H denotes the associated permutation representation of this action. Show that
 - (a) The action of G on G/H is transitive.
 - (b) Stabiliser of the left coset eH = H is the subgroup H.
 - (c) Kernel of ψ_H is the largest normal subgroup of G contained in H.

Solution: Let us denote G/H by A and let the action $\psi_H : G \to S_A$ is defined by $\psi_H(g)(g'H) := gg'H$ where S_A is the set of all permutations on A.

(a) Let us take g_1H and g_2H be arbitrary two elements of G/H.

Then, clearly $\psi_H(g_2g_1^{-1})(g_1H) = g_2H$ which shows that the action is transitive.

(b) Stabilizer of eH = H in G is $G_H := \{g \in G : \psi_H(g)H = H\} = \{g \in G : gH = H\} = H.$

(c) First we will show that $ker(\psi_H) \subseteq H$. Let $g \in ker(\psi_H) \implies \psi_H(g)(g'H) = g'H$ for all $g' \in G$. Take, g' = e and so we get $g \in H$ i.e. $ker(\psi_H) \subseteq H$.

Therefore, $ker(\psi_H)$ is a normal subgroup in H. Now, let $K \subseteq H$ is a normal subgroup of G i.e. $g^{-1}Kg = K$ for all $g \in G$. Let $k \in K$ and $g \in G$ be an arbitrary. Then $g^{-1}kg \in K \implies g^{-1}kg \in H \implies kgH = gH \implies \psi_H(k)(gH) = gH$ and we are done.

5. Show that if G is a group of order p^n , where p is a prime and n is a positive integer, then every subgroup of G of index p is normal in G (Hint: Use the action in problem 4). Solution:

Let H be a subgroup of G such that [G : H] = p. Consider the action of G on G/H which induces the permutation representation $\psi_H : G \to S_p$. We know from previous problem that $K := ker(\psi_H) \subseteq H$. Then, G/K is isomorphic to a subgroup of S_p , and so |G/K| will divide the order of S_p i.e. p!. But it must also divides $|G| = p^n$ and hence, it follows that |G/K| = p. Since |G/K| = [G : K] = [G : H][H : K] = p[H : K], it follows that [H : K] = 1 i.e. K = H and we are done.